1,660 research outputs found

    The Spectral Line Shape of Exotic Nuclei

    Get PDF
    The quadrupole strength function of 28O^{28}O is calculated making use of the SIII interaction, within the framework of continuum-RPA and taking into account collisions among the nucleons (doorway coupling). The centroid of the giant resonance is predicted at ≈14\approx 14 MeV, that is much below the energy expected for both isoscalar and isovector quadrupole resonances in nuclei along the stability valley. About half of this width arises from the coupling of the resonance to the continuum and about half is due to doorway coupling. This result is similar to that obtained in the study of giant resonances in light, β\beta-stable nuclei, and shows the lack of basis for the expectation, entertained until now in the literature, that continuum decay was the main damping mechanism of giant resonances in halo nuclei.Comment: LaTeX file, 7 pages, figures not included but available if requested at [email protected], accepted for publication in Phys. Rev.

    Self-Similar Intermediate Asymptotics for a Degenerate Parabolic Filtration-Absorption Equation

    Full text link
    The equation ∂tu=u∂xx2u−(c−1)(∂xu)2 \partial_tu=u\partial^2_{xx}u-(c-1)(\partial_xu)^2 is known in literature as a qualitative mathematical model of some biological phenomena. Here this equation is derived as a model of the groundwater flow in a water absorbing fissurized porous rock, therefore we refer to this equation as a filtration-absorption equation. A family of self-similar solutions to this equation is constructed. Numerical investigation of the evolution of non-self-similar solutions to the Cauchy problems having compactly supported initial conditions is performed. Numerical experiments indicate that the self-similar solutions obtained represent intermediate asymptotics of a wider class of solutions when the influence of details of the initial conditions disappears but the solution is still far from the ultimate state: identical zero. An open problem caused by the nonuniqueness of the solution of the Cauchy problem is discussed.Comment: 19 pages, includes 7 figure

    Shell Model Monte Carlo Studies of γ\gamma-Soft Nuclei

    Get PDF
    We present Shell Model Monte Carlo calculations for nuclei within the full major shell 50-82 for both protons and neutrons. The interaction is determined solely by self-consistency and odd-even mass differences. The methods are illustrated for 124{}^{124}Sn, 128{}^{128}Te and 124{}^{124}Xe. We calculate shape distributions, moments of inertia and pairing correlations as functions of temperature and angular velocity. Our calculations are the first microscopic evidence of γ\gamma-softness of nuclei in this region.Comment: uuencoded postscript of manuscript with three figure

    Nuclear composition and energy spectra in the 12 April 1969 solar particle event

    Get PDF
    Nuclear composition for several multicharged nuclei and energy spectra for hydrogen, helium, and medium nuclei measured in solar particle even

    Fitting theories of nuclear binding energies

    Full text link
    In developing theories of nuclear binding energy such as density-functional theory, the effort required to make a fit can be daunting due to the large number of parameters that may be in the theory and the large number of nuclei in the mass table. For theories based on the Skyrme interaction, the effort can be reduced considerably by using the singular value decomposition to reduce the size of the parameter space. We find that the sensitive parameters define a space of dimension four or so, and within this space a linear refit is adequate for a number of Skyrme parameters sets from the literature. We do not find marked differences in the quality of the fit between the SLy4, the Bky4 and SkP parameter sets. The r.m.s. residual error in even-even nuclei is about 1.5 MeV, half the value of the liquid drop model. We also discuss an alternative norm for evaluating mass fits, the Chebyshev norm. It focuses attention on the cases with the largest discrepancies between theory and experiment. We show how it works with the liquid drop model and make some applications to models based on Skyrme energy functionals. The Chebyshev norm seems to be more sensitive to new experimental data than the root-mean-square norm. The method also has the advantage that candidate improvements to the theories can be assessed with computations on smaller sets of nuclei.Comment: 17 pages and 4 figures--version encorporates referee's comment

    Extracting particle freeze-out phase-space densities and entropies from sources imaged in heavy-ion reactions

    Get PDF
    The space-averaged phase-space density and entropy per particle are both fundamental observables which can be extracted from the two-particle correlation functions measured in heavy-ion collisions. Two techniques have been proposed to extract the densities from correlation data: either by using the radius parameters from Gaussian fits to meson correlations or by using source imaging, which may be applied to any like pair correlation. We show that the imaging and Gaussian fits give the same result in the case of meson interferometry. We discuss the concept of an equivalent instantaneous source on which both techniques rely. We also discuss the phase-space occupancy and entropy per particle. Finally, we propose an improved formula for the phase-space occupancy that has a more controlled dependence on the uncertainty of the experimentally measured source functions.Comment: 14 pages, final version, to appear PRC. Fixed typos, added refs. for last section, added discussions of imaging and d/p ratio

    Source Dimensions in Ultrarelativistic Heavy Ion Collisions

    Full text link
    Recent experiments on pion correlations, interpreted as interferometric measurements of the collision zone, are compared with models that distinguish a prehadronic phase and a hadronic phase. The models include prehadronic longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and rescattering of the produced hadrons. We find that the longitudinal and outward radii are surprisingly sensitive to the algorithm used for two-body collisions. The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a heavy target requires the existence of a prehadronic phase which converts to the hadronic phase at densities around 0.8-1.0 GeV/fm3^3. The transverse radii cannot be reproduced without introducing more complex dynamics into the transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major change is an additional discussion of the classical two-body collision algorithm, a (compressed) postscript file of the complete paper including figures can be obtained from Authors or via anonymous ftp at ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.

    Absorption of Energy at a Metallic Surface due to a Normal Electric Field

    Full text link
    The effect of an oscillating electric field normal to a metallic surface may be described by an effective potential. This induced potential is calculated using semiclassical variants of the random phase approximation (RPA). Results are obtained for both ballistic and diffusive electron motion, and for two and three dimensional systems. The potential induced within the surface causes absorption of energy. The results are applied to the absorption of radiation by small metal spheres and discs. They improve upon an earlier treatment which used the Thomas-Fermi approximation for the effective potential.Comment: 19 pages (Plain TeX), 2 figures, 1 table (Postscript
    • …
    corecore